Abstract

In this paper, we apply discrete-event system techniques to model and analyze the execution of concurrent software. The problem of interest is deadlock avoidance in shared-memory multithreaded programs. We employ Petri nets to systematically model multithreaded programs with lock acquisition and release operations. We define a new class of Petri nets, called Gadara nets, that arises from this modeling process. We investigate a set of important properties of Gadara nets, such as liveness, reversibility, and linear separability. We propose efficient algorithms for the verification of liveness of Gadara nets, and report experimental results on their performance. We also present modeling examples of real-world programs. The results in this paper lay the foundations for the development of effective control synthesis algorithms for Gadara nets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.