Abstract

The optimal linear estimation problems are investigated in this paper for a class of discrete linear systems with fading measurements and correlated noises. Firstly, the fading measurements occur in a random way where the fading probabilities are regulated by probability mass functions in a given interval. Furthermore, time-delay exists in the system state and observation simultaneously. Additionally, the multiplicative noises are considered to describe the uncertainty of the state. Based on the projection theory, the linear minimum variance optimal linear estimators, including filter, predictor, and smoother are presented in the paper. Compared with conventional state augmentation, the new algorithm is finite-dimensionally computable and does not increase computational and storage load when the delay is large. A numerical example is provided to illustrate the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.