Abstract

This paper is concerned with the optimal linear estimation problem for linear discrete-time stochastic systems with multiple packet dropouts. Based on a packet dropout model, the optimal linear estimators including filter, predictor and smoother are developed via an innovation analysis approach. The estimators are computed recursively in terms of the solution of a Riccati difference equation of dimension equal to the order of the system state plus that of the measurement output. The steady-state estimators are also investigated. A sufficient condition for the convergence of the optimal linear estimators is given. Simulation results show the effectiveness of the proposed optimal linear estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.