Abstract

In this paper, we consider a classical algebraic multigrid (AMG) form of optimal interpolation that directly minimizes the two-grid convergence rate and compare it with a so-called ideal interpolation that minimizes a weak approximation property of the coarse space. We study compatible relaxation type estimates for the quality of the coarse grid and derive a new sharp measure using optimal interpolation that provides a guaranteed lower bound on the convergence rate of the resulting two-grid method for a given grid. In addition, we design a generalized bootstrap AMG setup algorithm that computes a sparse approximation to the optimal interpolation matrix. We demonstrate numerically that the bootstrap AMG method with sparse interpolation matrix (and spanning multiple levels) converges faster than the two-grid method with the standard ideal interpolation (a dense matrix) for various scalar diffusion problems with highly varying diffusion coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call