Abstract
AbstractThis paper is concerned with the development of algebraic multigrid (AMG) solution methods for the coupled vector–scalar fields of incompressible fluid flow. It addresses in particular the problems of unstable smoothing and of maintaining good vector–scalar coupling in the AMG coarse‐grid approximations. Two different approaches have been adopted. The first is a direct approach based on a second‐order discrete‐difference formulation in primitive variables. Here smoothing is stabilized using a minimum residual control harness and velocity–pressure coupling is maintained by employing a special interpolation during the construction of the inter‐grid transfer operators. The second is an indirect approach that avoids the coupling problem altogether by using a fourth‐order discrete‐difference formulation in a single scalar‐field variable, primitive variables being recovered in post‐processing steps. In both approaches the discrete‐difference equations are for the steady‐state limit (infinite time step) with a fully implicit treatment of advection based on central differencing using uniform and non‐uniform unstructured meshes. They are solved by Picard iteration, the AMG solvers being used repeatedly for each linear approximation.Both classical AMG (C‐AMG) and smoothed‐aggregation AMG (SA‐AMG) are used. In the direct approach, the SA‐AMG solver (with inter‐grid transfer operators based on mixed‐order interpolation) provides an almost mesh‐independent convergence. In the indirect approach for uniform meshes, the C‐AMG solver (based on a Jacobi‐relaxed interpolation) provides solutions with an optimum scaling of the convergence rates. For non‐uniform meshes this convergence becomes mesh dependent but the overall solution cost increases relatively slowly with increasing mesh bandwidth. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.