Abstract
Runge–Kutta integration schemes are well suited to the determination of ray trajectories in inhomogeneous media. There is a fundamental difference, however, between Runge–Kutta schemes and many other schemes for numerically integrating ordinary differential equations: Runge–Kutta schemes are not based on approximating the continuous trajectory by a polynomial. Consequently, these schemes do not implicitly provide a continuous trajectory; they yield only a series of points through which the ray passes, together with the ray direction at those points. A supplementary method must be devised when a continuous trajectory is required. The accuracy of a continuous trajectory for Runge–Kutta schemes is limited by the error introduced in a single iteration of the integrator. A trajectory that attains this limit is referred to here as optimal. The existing method of calculating trajectories for a widely used Runge–Kutta scheme is, in fact, not optimal. Accordingly, an efficient method of determining optimal intermediate trajectories is presented. This new technique is shown to be superior to the existing method for locating ray–surface intersections and allows accuracy doubling (a recently proposed method for accelerating the analysis of systems with inhomogeneous elements) to be used to full advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.