Abstract

A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn and the edge set E={{x=(x1,…,xn),y=(y1,…,yn)}∣|xi−yi|≤1for i=1,…,n,x≠y}, and give some lower bounds on the density of an r-identifying code. In particular, we prove that for n=3 and for all r≥15, the optimal density of an r-identifying code is 18r2. The problem finding a minimum identifying code in the 3-dimensional king grid is equivalent with a minimum packing problem of cubes in the 3-dimensional lattice so that every point is covered by a distinct and non-empty subset of cubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.