Abstract

Assume that $G = (V, E)$ is an undirected graph, and $C \subseteq V$. For every $v \in V$, we denote $I_r(G;v) = \{ u \in C: d(u,v) \leq r\}$, where $d(u,v)$ denotes the number of edges on any shortest path from $u$ to $v$. If all the sets $I_r(G;v)$ for $v \in V$ are pairwise different, and none of them is the empty set, the code $C$ is called $r$-identifying. If $C$ is $r$-identifying in all graphs $G'$ that can be obtained from $G$ by deleting at most $t$ edges, we say that $C$ is robust against $t$ known edge deletions. Codes that are robust against $t$ unknown edge deletions form a related class. We study these two classes of codes in the king grid with the vertex set ${\Bbb Z}^2$ where two different vertices are adjacent if their Euclidean distance is at most $\sqrt{2}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.