Abstract

Minimal deterministic finite automata (DFAs) can be reduced further at the expense of a finite number of errors. Recently, such minimization algorithms have been improved to run in time O(n log n), where n is the number of states of the input DFA, by [GAWRYCHOWSKI and JEŻ: Hyper-minimisation made efficient. Proc. MFCS, LNCS 5734, 2009] and [HOLZER and MALETTI: An n log n algorithm for hyper-minimizing a (minimized) deterministic automaton. Theor. Comput. Sci. 411, 2010]. Both algorithms return a DFA that is as small as possible, while only committing a finite number of errors. These algorithms are further improved to return a DFA that commits the least number of errors at the expense of an increased (quadratic) run-time. This solves an open problem of [BADR, GEFFERT, and SHIPMAN: Hyper-minimizing minimized deterministic finite state automata. RAIRO Theor. Inf. Appl. 43, 2009]. In addition, an experimental study on random automata is performed and the effects of the existing algorithms and the new algorithm are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.