Abstract

The aim of this study is to find an optimal design for a distributed hybrid renewable energy system (HRES) for a residential house in the UK. The hybrid system, which consists of wind turbines, PV arrays, a biodiesel generator, batteries and converters, is designed to meet the known dynamic electrical load of the house and make use of renewable energy resources available locally. Hybrid Optimization Model for Electric Renewables (HOMER) software is used for this study. Different combinations of wind turbines, PV arrays, a biodiesel generator and batteries are evaluated and compared using the NPC (Net Present Cost) method to find the optimal solutions. The HRES is modeled, simulated and optimized using HOMER. The results showed that the wind-biodiesel engine-battery system was the best with the lowest NPC (USD 60254) and the lowest COE (Cost of Energy, USD 0.548/kWh) while the second best system added PV arrays. This study gives evidence of the key contribution wind turbines make to HRES due to abundant wind resources in the UK, especially in Wales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.