Abstract
The variations of population size with respect to time are often described by means of differential equations. This paper assumes the population size follows an uncertain logistic population equation, and calculates its uncertainty distribution and α-paths. The first hitting time that the population size reaches a pre-set level is investigated, which forms an uncertain renewal process, based on which a harvesting strategy is designed. With the help of fundamental theorem of uncertain renewal processes, the optimal harvesting strategy problem is transformed to a traditional optimization problem involving two variables which could be easily solved analytically or numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.