Abstract

High-etendue Fourier transform imaging spectrometers can be useful tools for acquiring airborne hyperspectral images, since they do not need moving parts and, as Fourier transform spectrometers, they benefit from the Felgett advantage. The Sagnac interferometer and the Michelson interferometer with dihedrons can be used in such an instrument. These two interferometers act very similarly on the entering beam, and in particular they both work with fringes of equal inclination. This property enables them to benefit from the Jacquinot advantage, too. Nevertheless, to fully benefit from this advantage, it is necessary to maximize the geometrical etendue accepted by the interferometer. From this point of view, the Michelson interferometer with dihedrons appears to be much more interesting than the Sagnac interferometer. Indeed, calculation shows that, in the optimal symmetric configuration, and for the same beamsplitter diameter, the etendue accepted without vignetting by the Michelson interferometer is more than five times greater than the etendue accepted by the Sagnac interferometer. Even if, in a real instrument, the optical scheme cannot be exactly this optimal configuration, this result is a strong argument in support of the Michelson interfero-meter with dihedrons

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.