Abstract
In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.