Abstract
Diagnosing depression at an early stage is crucial and majorly depends on the clinician’s skill. The present work aims to develop an automated tool for assisting the diagnostic procedure of depression using multiple machine-learning techniques. The dataset of sample size 4184 used in this study contains biometric and demographic information of individuals with or without depression, accessed from the University of Nice Sophia-Antipolis. The Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are used for classifying the depressed from the control group. To enhance the computational efficiency, various feature selection algorithms like Recursive Feature Elimination (RFE), Mutual Information (MI) and three bio-inspired techniques, viz. Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Firefly Algorithms (FA) have been incorporated. To enhance the feature selection process further, majority voting is carried out in all possible combinations of three, four and five feature selection techniques. These feature selection techniques bring down the feature set size significantly to a mean of 33 from the actual size of 61 which is a reduction of 45.90%. The classification accuracy of the enhanced model varies between 84.18% and 88.46%, which is a significant improvement in performance as compared to the pre-existing models (83.76–85.89%). The proposed predictive models outperform the pre-existing classification models without feature selection and thereby enhancing both the performance and efficiency of the diagnostic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.