Abstract
In this paper, we develop optimal trading strategies for a risk averse investor by minimizing the expected cost and the risk of execution. Here we consider a law of motion for price which uses a convex combination of temporary and permanent market impact. In the special case of unconstrained problem for a risk neutral investor, we obtain a closed form solution for optimal trading strategies by using dynamic programming. For a general problem, we use a quadratic programming approach to get approximate dynamic optimal trading strategies. Further, numerical examples of optimal execution strategies are provided for illustration purposes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have