Abstract

Optimal control theory is applied for designing pulse sequences to optimally excite a spin-3/2 system with residual quadrupolar coupling in the presence of quadrupolar relaxation. A homogeneous form of the master equation is constructed to simulate the dynamics of the spin system, and a general optimization procedure with a homogeneous form of the equation of motion is described. The optimized pulses are tested with (23)Na NMR, and their performance is compared with that of pulses optimized in the absence of relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.