Abstract

In an effort to provide insight into the molecular origins of the (2)H double quantum filtered (DQF) NMR signal observed in connective tissue, specifically spinal disc tissue, (2)H multiple quantum filtered (MQF) NMR spectroscopy is used to study the structure and dynamics of D2O in collagen as a function of hydration. Residual quadrupolar coupling constants are measured and decrease from 3500 to 20 Hz while T2 relaxation times increase from 0.65 to 20 ms as hydration increases. Analysis of the data indicates that the quadrupolar coupling and T2 relaxation arises when water molecules spend time in restricted environments. The residual quadrupolar coupling is influenced almost exclusively by the most restricted water sites, the clefts of the triple helices not exposed on the surface of the fibrils, while the T2 relaxation has secondary contributions from less restricted water environments. The magnitudes of the measured values are consistent with results from DQF NMR studies of spinal disc tissue, supporting the assertion that water binding to collagen is a major contributor to the DQF NMR signal observed in spinal disc tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.