Abstract
In this paper, optimal energy management strategies are derived to balance fuel consumption, raw particulate matter (PM) emissions, and raw nitrogen oxide (NOx) emissions for a Diesel hybrid electric vehicle. Two methods for the derivation of these strategies are compared. One method is based on dynamic programming and steady-state engine maps only. The second method is based on dynamic programming, steady-state engine maps, and a validated transient PM emission model. As a result, only the second method allows for the generation of smooth engine set point trajectories to reduce transient PM emissions without compromising fuel consumption and NOx emissions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have