Abstract

Microgrids with hybrid renewable energy sources are increasing and it is a promising solution to electrify remote areas where distribution network expansion is not feasible or not economical. Standalone microgrids with environment-friendly hybrid energy sources is a cost-effective solution that ensures system reliability and energy security. This paper determines the optimal capacity, energy dispatching and techno-economic benefits of standalone microgrid in remote area in Tamilnadu, India. Microgrids with hybrid energy sources comprising photovoltaic (PV), wind turbine (WT), battery energy storage system (BESS) and diesel generator (DG) are considered in this paper. Various case studies are implemented with hybrid energy sources and for each case study a comparative analysis of techno-economic benefits is demonstrated. Eight different configurations of hybrid energy sources are modeled with renewable fractions of 50%, 60%, 65%, and 100%, respectively. The optimization analysis is carried out using Hybrid Optimization Model for Electric Renewable (HOMER) software. Impact of demand response is also demonstrated on energy dispatching and techno-economic benefits. Simulation results are obtained for the optimal capacity of PV, WT, DG, converter, and BESS, charging/discharging pattern, state of charge (SOC), net present cost (NPC), cost of energy (COE), initial cost, operation cost, fuel cost, greenhouse gas emission penalty and payback period considering seasonal load variation. It is observed that PV+BESS is the most economical configuration. COE in standalone microgrid is higher than the conventional grid price. The results show that CO 2 emissions in hybrid PV+WT+DG+BESS are reduced by about 68% compared with the traditional isolated distribution system with DG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.