Abstract
In this paper, the design and performance of an energy hub to supply the demands of heating, cooling, electricity and freshwater for a coastal urban is considered. The modeling framework considers exergy and economic factors as well as greenhouse gas emissions. To optimally meet the demands of the energy hub, the consumed energy flows and their exchanges with the outside of the hub are determined. The optimization problem will be solved according to the environmental conditions, demands and design parameters of energy hub equipment. A comprehensive thermodynamic analysis of the energy hub is considered in order to take into account the economic and emissions outlook, along with renewable energy sources. In this study, two levels of integrated system modeling are simulated as “design” and “environmental-design” to optimize the energy hub with high accuracy. The results showed that the microturbine capacity decreased during the hours of sun exposure and power generation by the solar panels. As the heat generated by the Photovoltaic/Thermal (PV/T) system increases, the contribution of the adsorption chiller in cooling demand has increased. After performing optimization, the total annual costs in the urban area decreased by 30%, exergy efficiency increased by 28%, and carbon dioxide emissions decreased by 16%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have