Abstract

This paper presents the Trust Level Routing (TLR) protocol, an extension of the optimized energy-delay routing (OEDR) protocol, focusing on the integrity, reliability and survivability of the wireless network. TLR is similar to OEDR in that they both are link state routing protocols that run in a proactive mode and adopt the concept of multi-point relay (MPR) nodes. However, TLR aims at incorporating trust levels into routing by frequently changing the MPR nodes as well as authenticating the source node and contents of control packets. TLR calculates the link costs based on a composite metric (delay incurred, energy available at the neighbor node, energy spent during transmission and the number of packets sent on each link) for the selection of MPR nodes. We highlight the vulnerabilities in OEDR and show ways to counter the possible attacks by using authentication and traffic partition as a basis for mitigating the effects of malicious activity. Network simulator NS2 results show that TLR delivers the packets with a noticeable decrease in the average end-to-end delay with a small increase in the power consumed due to the additional computational overhead attributed to the security extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.