Abstract

Three 4H-SiC bipolar junction transistor designs with different emitter cell geometries (linear interdigitated fingers, square cell geometry, and hexagon cell geometry) are fabricated, analyzed, and compared with respect to current gain, ON-resistance $(\text{R}_{{\mathrm {ON}}})$ , current density $(J_{\mathrm {{C}}})$ , and temperature performance for the first time. Emitter size effect and surface recombination are investigated. Due to a better utilization of the base area, optimal emitter cell geometry significantly increases the current density about 42% and reduces the ON-resistance about 21% at a given current gain, thus making the device more efficient for high-power and high-temperature applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call