E-mobility represents an important part of the EU’s green transition and one of the key drivers for reducing CO2 pollution in urban areas. To accelerate the e-mobility sector’s development it is necessary to invest in energy infrastructure and to assure favorable conditions in terms of competitive electricity prices to make the technology even more attractive. Large peak consumption of parking lots which use different variants of uncoordinated charging strategies increases grid problems and increases electricity supply costs. On the other hand, as observed lately in energy markets, different, mostly uncontrollable, factors can drive electricity prices to extreme levels, making the use of electric vehicles very expensive. In order to reduce exposure to these extreme conditions, it is essential to identify the optimal way to supply parking lots in the long term and to apply an adequate charging strategy that can help to reduce costs for end consumers and bring higher profit for parking lot owners. The significant decline in photovoltaic (PV) and battery storage technology costs makes them an ideal complement for the future supply of parking lots if they are used in an optimal manner in coordination with an adequate charging strategy. This paper addresses the optimal power supply investment problem related to parking lot electricity supply coupled with the application of an optimal EV charging strategy. The proposed optimization model determines optimal investment decisions related to grid supply and contracted peak power, PV plant capacity, battery storage capacity, and operation while optimizing EV charging. The model uses realistic data of EV charging patterns (arrival, departure, energy requirements, etc.) which are derived from commercial platforms. The model is applied using the data and prices from the Croatian market.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call