Abstract
We consider a classical surplus process where the insurer can choose a different level of reinsurance at the start of each year. We assume the insurer’s objective is to minimise the probability of ruin up to some given time horizon, either in discrete or continuous time. We develop formulae for ruin probabilities under the optimal reinsurance strategy, i.e. the optimal retention each year as the surplus changes and the period until the time horizon shortens. For our compound Poisson process, it is not feasible to evaluate these formulae, and hence determine the optimal strategies, in any but the simplest cases. We show how we can determine the optimal strategies by approximating the (compound Poisson) aggregate claims distributions by translated gamma distributions, and, alternatively, by approximating the compound Poisson process by a translated gamma process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.