Abstract

One of the methods to improve efficiency and torque performance of the single-phase brushless DC (BLDC) motor is to find out the optimum commutation angle at each different speed. We used the finite-element method (FEM) to simulate the back-EMF voltage and the coil current for the single-phase BLDC motor, and then adjust the conduction time of switches by detecting the waveform of coil current. The motor can improve its efficiency, noise, and vibration when it obtains the optimal shift angle of each speed. We used PSPICE to verify the exactness of FEM simulation results of the single-phase BLDC motor. We adopted Microchip's dsPIC30F4011 digital signal processor (DSP) to process the Hall signal and the driving signals of switches of the driving system prototype of the single-phase BLDC fan motor. Finally, we used the related experimental results to confirm the feasibility and effectiveness of the proposed driver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.