Abstract

In this paper, a method which employs a Modified Teaching–Learning Based Optimization (MTLBO) algorithm is proposed to determine the optimal placement and size of Distributed Generation (DG) units in distribution systems. For the sake of clarity, and without loss of generality, the objective function considered is to minimize total electrical power losses, although the problem can be easily configured as multi-objective (other objective functions can be considered at the same time), where the optimal location of DG systems, along with their sizes, are simultaneously obtained. The optimal DG site and size problem is modeled as a mixed integer nonlinear programming problem. Evolutionary methods are used by researchers to solve this problem because of their independence from type of the objective function and constraints. Recently, a new evolutionary method called Teaching–Learning Based Optimization (TLBO) algorithm has been presented, which is modified and used in this paper to find the best sites to connect DG systems in a distribution network, choosing among a large number of potential combinations. A comparison between the proposed algorithm and a brute force method is performed. Besides this, it has also been carried out a comparison using several results available in other articles published by others authors. Numerical results for two test distribution systems have been presented in order to show the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.