Abstract

An optimal ampere-turns design for a long-distance dipole-coil-based inductive power transfer (IPT) system for maximum power efficiency is proposed in this article. Assuming that specific requirements, which are the target load power, the physical size of the transmitting (Tx) and receiving (Rx) coils, and the distance between the Tx and Rx coils, are given, quantitative analyses on the optimal ampere-turns of loosely coupled Tx and Rx coils to satisfy the constraints with maximum power efficiency have been conducted in this article. With the proposed design process, the IPT system is expected to be designed and fabricated with minimal cost and time. The maximum experimental error is only 8.8% when the delivery power ranges from 20–200 W in the experiment results, thus demonstrating that the method proposed in this article can suggest a viable design direction of the IPT system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.