Abstract
The vast majority of control schemes related to the sequential probability ratio test (SPRT) are designed for the purpose of monitoring only the process mean. Nonetheless, most manufacturing processes are vulnerable to external factors that cause the process mean and variability to change simultaneously. It is, therefore, crucial to consider a joint scheme for monitoring both the location and scale parameters of a production process. In this article, we develop a scheme that combines both mean and variance information in a single SPRT, known as the omnibus SPRT (OSPRT) chart. Expressions for the run-length properties of the OSPRT chart are derived by means of the Markov chain approach. We also propose optimal designs for the OSPRT chart based on two different metrics, i.e. by minimising the average time to signal and the average extra quadratic loss. Through a comprehensive analysis, this article reveals that the optimal OSPRT chart outperforms the classical -S, weighted-loss cumulative sum, absolute-value SPRT, and two maximum weighted-moving-average-type charts. The optimal OSPRT chart also has the advantage of collecting a small number of samples on average before producing a decision. Finally, the implementation of the OSPRT chart is presented with a wire bonding industrial dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.