Abstract

This paper presents the prediction of a singly reinforced concrete beam tension reinforcement design requirements using Artificial Neural Networks (ANN). The method was adopted for cost optimization of the tension reinforcement in the structural element and compared with the requirements of Eurocode 2 design. The code provisions for the design of a singly reinforced beam can vary from place to place. The use of a system immune from the code variation is an excellent means of predicting the reinforcement’s need of a rectangular concrete beam. In this work, an artificial neural network (ANN) is employed to forecast the reinforcement of such a beam. Artificial neural network has the potential to simulate the data that are hard to produce in arithmetical analysis. The scheme was established using the MATLAB tool kit. The design variables were the depth of the beam, the width of the beam, and the moments. A forward pass supervised backward propagation training. The regression analysis of the results is one to one match. The predicted and target values are completely in accord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.