Abstract
A unified approach that accounts for buckling and stress limitations in optimization of skeletal structures is presented. Global buckling, local buckling and exceptions from allowed stresses in frame members are considered by optimizing the geometric and material nonlinear response instead of by imposing a large number of constraints. In the proposed approach, each frame member is modeled as a sequence of co-rotational beam elements with hyperelastic material behavior. Design variables are cross-section properties so that both topology and sizes can be optimized, and to node coordinates so that shape optimization can be pursued. Sensitivity analysis follows the adjoint method and optimization is solved using well-established first-order methods. We show that the procedure leads to a buckling-resistant and stress-constrained design by maximizing the sustained load for a given prescribed displacement. A detailed discussion on key aspects of the proposed approach is presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have