Abstract

In this paper we employ genetic algorithms in order to theoretically design a range of phononic media that can act to prevent or ensure antiplane elastic wave propagation over a specific range of low frequencies, with each case corresponding to a specific pre-stress level. The medium described consists of an array of cylindrical annuli embedded inside an elastic matrix. The annuli are considered as capable of large strain and their constitutive response is described by the popular Mooney–Rivlin strain energy function. The simple nature of the medium described is an alternative approach to topology optimization in phononic media, which although useful, often gives rise to complex phase distributions inside a composite material, leading to more complicated manufacturing requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.