Abstract
Trains equipped with automatic train operation (ATO) systems are operated between stations according to the speed commands they receive from balises. These commands define a particular speed profile and running time, with associated energy usage (consumption). The design of speed profiles usually takes into account running times and comfort criteria, but not energy consumption criteria. In this article, a computer-aided procedure for the selection of optimal speed profiles, including energy consumption, which does not have an effect on running times, is presented. To this end, the equations and algorithms that define the train motion and ATO control have been modelled and implemented in a very detailed simulator. This simulator includes four independent modules (ATO, motor, train dynamics, and energy consumption), an automatic generator of every possible profile and a graphical assistant for the selection of speed commands in accordance with decision theory techniques. The results have been compared with measured data in order to adjust and validate the simulator. The implementation of this new procedure in the Madrid underground has led to a 13 per cent of energy saving. As a result, the decision has been taken to redesign all the ATO speed profiles on this underground.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.