Abstract

The weight minimum optimization of composite hydrogen storage vessel under the burst pressure constraint is considered. An adaptive genetic algorithm is proposed to perform the optimal design of composite vessels. The proposed optimization algorithm considers the adaptive probabilities of crossover and mutation which change with the fitness values of individuals and proposes a penalty function to deal with the burst pressure constraint. The winding thickness and angles of composite layers are chosen as the design variables. Effects of the population size and the number of generations on the optimal results are explored. The results using the adaptive genetic algorithm are also compared with those using the simple genetic algorithm and the Monte Carlo optimization method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.