Abstract

In this paper we describe an efficient approach for multimodal function optimization using genetic algorithms (GAs). We recommend the use of adaptive probabilities of crossover and mutation to realize the twin goals of maintaining diversity in the population and sustaining the, convergence capacity of the GA. In the adaptive genetic algorithm (AGA), the probabilities of crossover and mutation, p/sub c/ and p/sub m/, are varied depending on the fitness values of the solutions. High-fitness solutions are 'protected', while solutions with subaverage fitnesses are totally disrupted. By using adaptively varying p/sub c/ and p/sub ,/ we also provide a solution to the problem of deciding the optimal values of p/sub c/ and p/sub m/, i.e., p/sub c/ and p/sub m/ need not be specified at all. The AGA is compared with previous approaches for adapting operator probabilities in genetic algorithms. The Schema theorem is derived for the AGA, and the working of the AGA is analyzed. We compare the performance of the AGA with that of the standard GA (SGA) in optimizing several nontrivial multimodal functions with varying degrees of complexity.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.