Abstract

An efficient optimal algorithm, named SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) for the PCF-based Raman amplifiers (PCF-RA) design has been applied for the first time, in order to achieve the flat Raman gain characteristics. The pump spectra (wavelengths and powers) have been optimized to achieve low gain ripple (GR) over C+L band. The PCF considered to study the RA has the following parameters: �� =4μm, d/�� =0.625, Sixty signals (1540-1600 nm) spaced at 1 nm are launched to the PCF of 10-km length with an input power of -10 dBm/ch. Various pump wavelengths and power distributions have been considered with the aim to reduce the gain ripple as much as possible. Simulation results show that the lowest GR of 0.72 dB with a peak gain of 8.03 dB in an 10 km ULL-PCF can be attained over C+L band. Also, it has been easily found that, when the gain and bandwidth are approximately the same, the lowest GR decreases with the addition of pump number, i.e., the GR are 1.27, 1.11, 0.85, and 0.72 dB for 3, 4, 5, and 6 backward pumps, respectively. All this shows that PCF is an appropriate candidate for high gain Raman amplifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.