Abstract

Weirs and barrages are costly hydraulic diversion structures; therefore, any attempt to improve their design is a worthy contribution. Diversion structures, such as weir or barrage, may be designed on permeable formations considering homogenous soil properties. But in reality, soil properties are hardly homogeneous. In this paper, an approach is described to determine an economically efficient barrage profile by considering soil’s anisotropic behaviour. Hydraulic conductivity is considered to be an anisotropic soil property. An optimization-based methodology is developed to obtain the optimal barrage profile. The minimization of the material cost and minimization of the exit gradient is considered for multi-objective formulation. The multi-objective formulation is solved using NSGA-II, and a Pareto optimal front is obtained for different degrees of anisotropy. The flow interaction under a diversion structure in anisotropic soil is incorporated using the Modified Lane theory and is embedded in optimization formulation. The developed methodology is illustrated with a barrage profile as a hydraulic structure. A parametric study is carried out to study the effects of varying barrage design elements on the barrage’s optimum material cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call