Abstract

Although the impervious layer under a hydraulic structure is rarely flat, the effect of the impervious layer’s slope, under the hydraulic structure, on seepage characteristics has not been studied to date. Therefore, this study investigated the effect of the downhill and uphill impervious layer’s slope (downhill/uphill foundation slopes) on the uplift pressure, seepage discharge and exit gradient under hydraulic structures. In order to reach this goal, a numerical model has been developed in which the general equation of fluid flow in non-uniform; anisotropic soil is solved by the finite volume method on a structured grid. The model validation was performed using the measured data from experimental tests. The results of the model validation indicated that the model calculates the seepage discharge and uplift pressure with a maximum error of less than 3.79% and 3.25%, respectively. The results also indicated that by increasing the downhill foundation slope (DFS) the uplift force decreases, but the exit gradient and seepage discharge increase. Moreover, by increasing the uphill foundation slope (UFS), the uplift force increases but the exit gradient and seepage discharge decrease. In addition, the results demonstrate that by increasing the length of the cut-off wall the effect of the DFS on decreasing and UFS on increasing the uplift pressure force becomes more severe. However, the effect of the DFS on increasing the seepage discharge and UFS on decreasing the seepage discharge becomes milder as the length of the cut-off wall increases. By increasing the DFS, from zero to −15%, the exit gradient increases 19.75% and 14.4% for 1 m and 6 m cut-off lengths, respectively.

Highlights

  • One of the major issues that affects hydraulic structures is water seepage

  • In the present study a numerical model was developed, in which a general equation of fluid flow in non-uniform, anisotropic soil is solved by the finite volume method on a structured grid

  • The model was successfully validated using experimental data and was applied to analyse the effect of downhill and uphill foundation slopes on the seepage characteristics under the hydraulic structure

Read more

Summary

Introduction

One of the major issues that affects hydraulic structures is water seepage. The seeping water creates a hydraulic gradient between the upstream and downstream side of the dam. This hydraulic gradient causes a vertical upward pressure that is known as uplift pressure. The uplift pressure reduces the effective weight of the structure, which leads to the reduction of the resistance force. It is essential to identify the parameters which affect the seepage characteristics, such as seepage discharge, uplift pressure and exit gradient. These parameters have been the subject of many studies in the past

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call