Abstract
To optimize an interior permanent magnet synchronous motor (IPMSM) design for a fuel cell electric vehicle, a new surrogate-assisted multi-objective optimization (MOO) algorithm is proposed in this paper. The proposed algorithm is a multi-objective algorithm (MOO) that can account for three kinds of objectives such as the torque amplitude, torque ripple, and magnet usage simultaneously to improve the power transmission and to reduce the noise, vibration, and cost for various design variables. While the conventional MOO algorithms have a series that requires many function evaluations, especially considering many objectives and design variables, the proposed algorithm can create an accurate and well-distributed Pareto front set with few function evaluations. In comparison with the conventional MOO algorithms, the outstanding performance of the proposed algorithm is verified. Finally, the proposed algorithm is applied to an optimal design process of an IPMSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.