Abstract

This work studies synergies arising from combining industrial demand response and local renewable electricity supply. To this end, we optimize the design of a local electricity generation and storage system with an integrated demand response scheduling of a continuous power-intensive production process in a multi-stage problem. We optimize both total annualized cost and global warming impact and consider local photovoltaic and wind electricity generation, an electric battery, and electricity trading on day-ahead and intraday market. We find that installing a battery can reduce emissions and enable large trading volumes on the electricity markets, but significantly increases cost. Economically and ecologically-optimal operation of the process and battery are driven primarily by the electricity price and grid emission factor, respectively, rather than locally generated electricity. A parameter study reveals that cost savings from the local system and flexibilizing the process behave almost additively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.