Abstract

This paper presents an approach for the optimal design of a 2-DOF translational pick-and-place parallel robot. By taking account of the normalized inertial and centrifugal/Coriolis torques of a single actuated joint, two global dynamic performance indices are proposed for minimization. The pressure angles within a limb and between two limbs are considered as the kinematic constraints to prevent direct and indirect singularities. These considerations together form a multi-objective optimization problem that can then be solved by the modified goal attainment method. A numerical example is discussed. A number of robots designed by this approach have been integrated into production lines for carton packing in the pharmaceutical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.