Abstract

Abstract This paper deals with the optimal design of a 4-DOF SCARA type (three translations and one rotation) parallel robot using dynamic performance indices and angular constraints within and amongst limbs. The architecture of the robot is briefly addressed with emphasis on the mechanical realization of the articulated traveling plate for achieving a lightweight yet rigid design. On the basis of the kinematic singularity analysis, two types of transmission angle constraints are considered to ensure the kinematic performance. A simplified model of rigid body dynamics is then formulated, with which two global dynamic performance indices are proposed for minimization by taking into account both inertial and centrifugal/Coriolis effects. In addition, the servomotor specifications are estimated using the Extended Adept Cycle. The proposed approach has successfully been employed to develop a prototype machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call