Abstract

The synthesis and optimal design of batch plants is addressed in this study. It was applied to the technology of conventional ethanol production in a Cuban distillery using the product of enzymatic hydrolysis of pretreated bagasse as another sugared substrate, starting from laboratory results. The optimal configuration of stages, the number of units in each stage, the unit sizes and minimum total production cost are obtained from the global optimization model and the proposed superstructure. This global model is a mixed integer nonlinear programming (MINLP) formulation, which is represented and resolved by the Professional Software, General Algebraic Modeling System (GAMS) version 23.5 applying DICOPT Solver. Different scenarios are analyzed: attaching pretreatment and enzymatic hydrolysis of bagasse to a conventional distillery plant, selling ethanol, or selling the furfural as by-product if there is a guaranteed market. With this, an actual net present value (VNA) of USD 44´893 358.7 and 1.51 years of Payback Period (PP) are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.