Abstract

The analytical target cascading (ATC) methodology for optimizing hierarchical systems has demonstrated convergence properties for continuous, convex formulations. However, many practical problems involve both continuous and discrete design variables, resulting in mixed integer nonlinear programming (MINLP) formulations. While current ATC methods have been used to solve such MINLP formulations in practice, convergence properties have yet to be formally addressed, and optimality is uncertain. This paper describes properties of ATC for working with MINLP formulations and poses a solution method applying branch and bound as an outer loop to the ATC hierarchy in order to generate optimal solutions. The approach is practical for large hierarchically decomposed problems with relatively few discrete variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.