Abstract
The improved aerodynamic design of a horizontal axis small-scale wind turbine blade is crucial to increasing the efficiency and annual energy production of the turbine. One of the vital stages in aerodynamic design is the selection of the airfoil. Using the existing airfoils for a blade design which results in higher turbine characteristics is tedious. Consequently, this paper provides an optimal design strategy for a horizontal axis small-scale wind turbine blade through the multiobjective optimization of the airfoil using the Nondominated Sorting Genetic Algorithm II (NSGA-II). The latter outperforms the other commonly used genetic algorithms (GAs), as well as the Computational Fluid Dynamics (CFD) investigation of the different airfoil types and the wind turbine rotors on the steady or unsteady state aerodynamic performance. An NACA4412 airfoil with higher aerodynamic efficiency is considered as a baseline for the optimization in order to increase the lift coefficient and lift to drag ratio while avoiding excessive variations in the maximum relative thickness and area. The optimized airfoil (NACA4412-OPT) is used as the cross-sectional profile in the design procedure for a novel 1.15 m diameter three-bladed wind turbine rotor at a wind speed of 11.5 m/s, tip speed ratio of 4.65, and pitch angle of 0.2° by the Wilson design method. The two-dimensional analysis demonstrates that the optimized airfoil outperforms the other airfoils yielding the highest lift coefficient and lift to drag ratio, as well as a larger pitch range. The three-dimensional analysis shows that the time-averaged power coefficient value (0.33) of the new wind turbine is almost 26% higher and more stable than that of the original wind turbine while avoiding a high increase of the axial thrust.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have