Abstract

Decisions made by the experts in the construction industry are usually approximate and contain some sort of imprecision. Classical linear programming (LP) model optimize the decision making situation in a crisp environment. It is difficult to get an optimum decision with imprecise information of the project environment using LP. In the construction industry, identifying optimum number of construction pieces of equipment require experts' knowledge. When certain degree of flexibility needs to be incorporated in the given model to get more realistic results, fuzzy LP is used. But when the parameters on constraints and objective function are in a state of ambiguity then the extension principle is best suited, which is based on personal opinions and subjective judgments. The objective of this paper is to identify the optimum number of pieces of equipment required to complete the project in the targeted period with fuzzy data. A realistic case study has been considered for optimization and LINGO6 has been used to solve the various non-linear equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call