Abstract
The aim of this chapter is to study fully fuzzy linear fractional programming (FFLFP) problems where all coefficients of the decision variables and parameters are characterized by triangular fuzzy numbers. To deal with this, the authors have first to transform FFLFP problems to fuzzy linear programming (FLP) problems by using Charnes and Cooper method and then use signed distance ranking to convert fuzzy linear programming (FLP) problems to crisp linear programming (LP) problems. The proposed method is solved by using the simplex method to find the optimal solution of the problem. The authors have studied sensitivity analysis to determine changes in the optimal solution of the fully fuzzy linear fractional programming (FFLFP) problems resulting from changes in the parameters. To demonstrate the proposed method, one numerical example is solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.