Abstract

Linear fractional programming (LFP) problem is used worldwide in solving real world problems. In real life situations the parameters of the problem are imprecise instead of fixed real numbers. So, a procedure for modelling these impreciseness in mathematical form is required. Fuzzy set theory is a best tool to deal with such situations. In this paper LFP problem with fuzzy parameters are studied. A fuzzy linear fractional programming (FLFP) problem is considered by Das et al. (2018) where a simple ranking approach between two triangular fuzzy numbers is provided. Then, in their study a tri-objective LFP problem is formulated to calculate the upper, middle and the lower bounds of the fuzzy optimal value. There are some errors and shortcomings in Das et al. method. Hence, in this study errors and shortcomings of Das et al. method are pointed out. Also, to overcome these errors, a simple method is presented to obtain optimal solution and fuzzy optimal value of the objective function. Moreover, by solving some numerical examples these errors are demonstrated and using the new proposed algorithm the correct optimal solution and the fuzzy optimal value of objective function are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.