Abstract

The entropy of a subalgebra, which has been used in quantum ergodic theory to construct a noncommutative dynamical entropy, coincides for N-level systems and Abelian subalgebras with the notion of maximal mutual information of quantum communication theory. The optimal decompositions of mixed quantum states singled out by the entropy of Abelian subalgebras correspond to optimal detection schemes at the receiving end of a quantum channel. It is then worthwhile studying in some detail the structure of the convex hull of quantum states brought about by the variational definition of the entropy of a subalgebra. In this Letter, we extend previous results on the optimal decompositions for 3-level systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.