Abstract

In the context of the in-depth integration of the cyber system and the physical system, cooperative cyber–physical attacks (CCPAs) pose an increasing threat to the security and economy of the integrated energy system (IES). In this article, considering a gas–electricity interconnected IES, a new bi-level programming model is formulated to study the impact of the CCPA strategies on the economy of the IES. At the upper level, from the attacker’s perspective, an attack decision model is built to maximize the operational expenditure of the IES subject to the attack resource constraints. At the lower level, from the dispatcher’s perspective, an optimal scheduling model is established to minimize the operation cost in the case of the IES suffering from the CCPAs. Since the bi-level programming model is mixed-integer, nonlinear, and non-convex, a joint solution method (PSO+Yalmip+Cplex) is proposed to compute the optimal CCPA strategies. The impacts of the CCPA strategies on the economic dispatch (ED) of the IES are evaluated via numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.