Abstract
We consider the distributed setting of <inline-formula><tex-math notation="LaTeX">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="sharma-ieq1-3158202.gif"/></alternatives></inline-formula> autonomous mobile robots that operate in Look-Compute-Move cycles and communicate with other robots using a constant number of colored lights (the <i>robots with lights</i> model). We assume obstructed visibility where collinear robots do not see each other. In addition, we consider a grid-based terrain embedded in the 2-dimensional euclidean plane. The <small>Convex Hull Formation</small> problem is to relocate the <inline-formula><tex-math notation="LaTeX">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="sharma-ieq2-3158202.gif"/></alternatives></inline-formula> robots (starting at arbitrary, but distinct, initial positions) so that each robot is positioned on a vertex of a convex hull. In this article, we provide a framework for solving <small>Convex Hull Formation</small>. We then provide four asynchronous algorithms under this framework. Key measures of the algorithms’ performance include the time taken and the space occupied. The presented algorithms are randomized and their time bounds hold with high probability. The first <inline-formula><tex-math notation="LaTeX">$O(\max \lbrace n^{2},D\rbrace)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mo movablelimits="true" form="prefix">max</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>,</mml:mo><mml:mi>D</mml:mi><mml:mo>}</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq3-3158202.gif"/></alternatives></inline-formula>-time, <inline-formula><tex-math notation="LaTeX">$O({n^{2}})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq4-3158202.gif"/></alternatives></inline-formula>-perimeter, and <inline-formula><tex-math notation="LaTeX">$O({n^{3}})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq5-3158202.gif"/></alternatives></inline-formula>-area algorithm serves to introduce key ideas, where <inline-formula><tex-math notation="LaTeX">$D$</tex-math><alternatives><mml:math><mml:mi>D</mml:mi></mml:math><inline-graphic xlink:href="sharma-ieq6-3158202.gif"/></alternatives></inline-formula> is the diameter of the initial configuration. The subsequent algorithms, differing in computational requirements, run in <inline-formula><tex-math notation="LaTeX">$O(\max \lbrace n^{\frac{3}{2}},D\rbrace)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mo movablelimits="true" form="prefix">max</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo>,</mml:mo><mml:mi>D</mml:mi><mml:mo>}</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq7-3158202.gif"/></alternatives></inline-formula> time with a perimeter of <inline-formula><tex-math notation="LaTeX">$O(n^{\frac{3}{2}})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq8-3158202.gif"/></alternatives></inline-formula> and area of <inline-formula><tex-math notation="LaTeX">$O(n^{3})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq9-3158202.gif"/></alternatives></inline-formula>. We also prove lower bounds of <inline-formula><tex-math notation="LaTeX">$\Omega (n^{\frac{3}{2}})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Ω</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq10-3158202.gif"/></alternatives></inline-formula> for time and perimeter and <inline-formula><tex-math notation="LaTeX">$\Omega (n^{3})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Ω</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq11-3158202.gif"/></alternatives></inline-formula> for area, for any <small>Convex Hull Formation</small> algorithm; i.e., our <inline-formula><tex-math notation="LaTeX">$O(\max \lbrace n^{\frac{3}{2}},D\rbrace)-$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mo movablelimits="true" form="prefix">max</mml:mo><mml:mrow><mml:mo>{</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo>,</mml:mo><mml:mi>D</mml:mi><mml:mo>}</mml:mo></mml:mrow><mml:mo>)</mml:mo><mml:mo>-</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="sharma-ieq12-3158202.gif"/></alternatives></inline-formula>time algorithm is optimal in time, perimeter, and area.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have